Extensions 1→N→G→Q→1 with N=C2 and Q=C23×Dic5

Direct product G=N×Q with N=C2 and Q=C23×Dic5
dρLabelID
C24×Dic5320C2^4xDic5320,1626


Non-split extensions G=N.Q with N=C2 and Q=C23×Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(C23×Dic5) = C23×C52C8central extension (φ=1)320C2.1(C2^3xDic5)320,1452
C2.2(C23×Dic5) = C22×C4×Dic5central extension (φ=1)320C2.2(C2^3xDic5)320,1454
C2.3(C23×Dic5) = C22×C4.Dic5central stem extension (φ=1)160C2.3(C2^3xDic5)320,1453
C2.4(C23×Dic5) = C22×C4⋊Dic5central stem extension (φ=1)320C2.4(C2^3xDic5)320,1457
C2.5(C23×Dic5) = C2×C23.21D10central stem extension (φ=1)160C2.5(C2^3xDic5)320,1458
C2.6(C23×Dic5) = C2×D4×Dic5central stem extension (φ=1)160C2.6(C2^3xDic5)320,1467
C2.7(C23×Dic5) = C24.38D10central stem extension (φ=1)80C2.7(C2^3xDic5)320,1470
C2.8(C23×Dic5) = C2×Q8×Dic5central stem extension (φ=1)320C2.8(C2^3xDic5)320,1483
C2.9(C23×Dic5) = C10.422- 1+4central stem extension (φ=1)160C2.9(C2^3xDic5)320,1484
C2.10(C23×Dic5) = C2×D4.Dic5central stem extension (φ=1)160C2.10(C2^3xDic5)320,1490
C2.11(C23×Dic5) = C20.76C24central stem extension (φ=1)804C2.11(C2^3xDic5)320,1491
C2.12(C23×Dic5) = C4○D4×Dic5central stem extension (φ=1)160C2.12(C2^3xDic5)320,1498
C2.13(C23×Dic5) = C10.1062- 1+4central stem extension (φ=1)160C2.13(C2^3xDic5)320,1499
C2.14(C23×Dic5) = C22×C23.D5central stem extension (φ=1)160C2.14(C2^3xDic5)320,1511

׿
×
𝔽